
Chapter 4

Sobolev Spaces.

4.1 Generalized derivatives

Let f(x) and g(x) be two functions on R. What does it mean to say g(x) is
the derivative of f? Clearly the different quotient

gh(x) =
f(x+ h)− f(x)

h

must converge to g. The sense in which the convergence takes place is to
be specified. Here are some possibilities. Uniform convergence on finite
intervals.

sup
a≤x≤b

|gh(x)− g(x)| = 0

for every finite interval [a, b]. Require that for every x or for almost all x.

lim
h→0

f(x+ h)− f(x)

h
= g(x)

point wise. This is not easy to work with unless f is known a priori to
be absolutely continuous. Another possibility is to require that for some
1 ≤ p < ∞

lim
h→0

∥f(x+ h)− f(x)

h
− g(x)∥p = 0

or locally for every finite interval [a, b],

lim
h→0

∫ b

a

|f(x+ h)− f(x)

h
− g(x)|pdx = 0
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One could avoid all limits and require that

f(b)− f(a) =

∫ b

a

g(x)dx

which can be a problem if f is only known a priori to be a function in Lp.
What makes sense always is to demand that for any smooth function φ with
compact support

∫
φ′(x)f(x)dx+

∫
φ(x)g(x)dx = 0

We only need to assume only that f and g are locally in L1[a, b] on any finite
interval. Another possibility is to consider a smoothened version

fϵ(x) =

∫
f(x− y)ψϵ(y)dy

where ψϵ(x) = 1
ϵ
ψ(x

ϵ
) and ψ(·) is a nonnegative compactly supported in-

finitely differentiable function with
∫∞
−∞ ψ(y)dy = 1. Ask now that gϵ = f ′

ϵ

have a limit g as ϵ → 0, either uniformly on bounded sets, or in Lp(R) or
Lp[a, b].

The Sobolev spaces Wk,p(Rd) are defined as the space of functions u on
Rd such that u and all its partial derivatives Dn1

x1
· · ·Dnd

xd
u of order n =

n1+ · · ·+nd ≤ k are in Lp. We could start with C∞ functions with compact
support on Rd and complete it in the norm ∥u∥k,p defined by

∥u∥pk,p =
∑

n1,...nd
0≤n=n1+···+nd≤k

∥Dn1

x1
· · ·Dnd

xd
u∥pp (4.1)

If p = 2, in terms of Fourier Transforms,

∥u∥2k,2 =
∫

Rd

|û|2(ξ)[
∑

n1,...,nd
0≤n1+···+nd≤n

|ξ1|2n1 · · · |ξd|2nd]Πidξi

4.2 Embedding Theorems.

If u ∈ Lp and Diu = ∂u
∂xi

∈ Lp for i = 1, 2 . . . , d, one should expect u to be
more regular than a function in Lp. If d = 1,

|u(b)− u(a)| ≤
∫ b

a

|u′(x)|dx ≤ |a− b|
1
q ∥u′∥p
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Showing that u is Hölder continuous of order 1− 1
p
. What is the situation if

d ≥ 2?

Let us consider the operator Â which in terms of Fourier transforms is
multiplication by (1 + |ξ|2)− 1

2 .

(Âu)(ξ) =
1

(1 + |ξ|2) 1
2

û(ξ)

and consider its represenation by the kernel

(Au)(x) =

∫

Rd

u(x+ y)a(y)dy

where

a(x) = cd

∫

Rd

e−i<x,ξ>

(1 + |ξ|2) 1
2

dξ =
cd√
π

∫

Rd

∫ ∞

0

e−i<x,ξ>e−t(1+|ξ|2) 1√
t
dξdt

= kd

∫ ∞

0

e−t

t
d+1
2

e−
|x|2

4t dt =
kd

|x|d−1

∫ ∞

0

e−t |x|2e−
1
4t

dt

t
d+1
2

decays very rapidly at ∞, is smooth for x ≠ 0 and has a singularity of order
|x|1−d near the origin for d ≥ 2 and a logarithmic singularity at 0 when d = 1.
In particular a(·) ∈ Lq for q < d

d−1 . By Hölder’s inequality, A will map Lp

into L∞ for p > d. If p = d and d > 1 the result is false. Let us take d = 2
and a nonnegative function f with compact support such that f ∈ L2 but∫
R2

f(x)
|x| dx = ∞. We saw that Af has a singularity at 0. Let us consider

u = D1(Af). Clearly

∥u∥22 = ∥û∥22 =
∫

R2

ξ21
1 + |ξ|2 |f̂(ξ)|

2dξ ≤ ∥f̂∥22 = ∥f∥22

By Young’s inequality any K ∈ Lq maps Lp → Lp′ provided
1
p
− 1

p′
= 1 − 1

q
.

Therefore f ∈ W1,p implies f ∈ Lp′ so long as 1
p
− 1

p′
< 1

d
. By induction

f ∈ Wk,p implies that f ∈ W1,p implies f ∈ Lp′ so long as 1
p
− 1

p′
< k

d
).

Therefore on Rd, f ∈ Wk,p implies the continuity of f if k > d
p
.

Actually one can prove a stronger result to the effect that if 1
p
− 1

p′
= 1

d
.

then W1,p ⊂ Lp′ as long as 1 < p′ < ∞. This requires the following theorem.
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Theorem 4.1. Let Ta be the operator of convolution by the kernel |x|a−d on
Rd.

(Taf)(x) =

∫

Rd

|y|a−df(x+ y)dy (4.2)

Then Ta is bounded from Lp to Lp′ provided 1 < p < d
a
and 1

p′
= 1

p
− a

d
.

Proof. First, we note that for a > 0, Ta is well defined on bounded functions
with compact support. We start by proving a weak type inequlity of the
form

µ[x : |(Taf)(x)| ≥ ℓ] ≤ C
∥f∥qp
ℓq

For any choice of 1 < p < d
a
let f ∈ Lp. We can assume without loss of

generality that f ≥ 0. We write

(Taf)(x) =

∫

|y|≤ρ
|y|a−df(x+ y)dy +

∫

|y|≥ρ
|y|a−df(x+ y)dy

≤ u1 + u2

and estimate u1, u2 by

∥u1∥p ≤ C1ρ
a∥f∥p

∥u2∥∞ ≤
(∫

|y|≥ρ
|y|p∗(a−d)dy

) 1
p∗

∥f∥p = C2ρ
a−d+ d

p∗ ∥f∥p

We can now pick ρ = (2C2∥f∥p
ℓ

)
p

d−ap and estimate supx u2(x) ≤ ℓ
2 as well

as

µ[x : u1(x) ≥
ℓ

2
] ≤ 2pCp

1ρ
a p
∥f∥pp
ℓ p = C3

(
∥f∥p
ℓ

) ap2

d−ap
+p

= C3

(
∥f∥p
ℓ

)q

where q = pd
d−ap

or 1
q
= 1

p
− a

d
.

Now, an application of Marcinkiewicz interpolation gives boundedness
from Lp to Lq in the same range and with the same relation between p and
q.
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What about the trace of a function on a lower dimensional set? For
example if u ∈ Rn ∈ Wm,2 what can one say about the function

v(x1, · · · , xk) = u(x1, . . . , xk, 0, . . . , 0)

the restriction of u to a k dimensional hyperplane.

Theorem 4.2.

∥v∥m−n−k
2

,2 ≤ C∥u∥m,2

Lose 1
2 derivative for each restriction to co-dimension 1.

Proof. Assume k = n− 1. Let û(y1, . . . , yn) be the Fourier transform.

v̂(y1, . . . , yn−1) =

∫
û(y1, . . . , yn)dyn

∫

Rn−1

[
|
∫

R

û(y1, . . . , yn)dyn|2
][

1 + |y1|2 + · · ·+ |yn−1|2
]m− 1

2

]dy1 · · · dyn−1

Write

û(y1, . . . , yn) = û(y1, . . . , yn)[1+ |y1|2+ · · ·+ |yn|2]
m
2 [1+ |y1|2+ · · ·+ |yn|2]−

m
2

By Schwartz inequality

∫

Rn−1

|
∫

R

û(y1, . . . , yn)dyn|2dy1 · · ·dyn−1

≤ |û|m,2|2
[

sup
y1,...,yn−1

∫
[1 + |y1|2 + · · ·+ |yn|2]−

m
2 dyn

]

∫
[1 + |y1|2 + · · ·+ |yn|2]−

m
2 dyn ≤ C[1 + |y1|2 + · · ·+ |yn−1|2]

m−1
2

provided m > 1
2 .
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4.3 Fractional Derivatives.

We can also define the fractional derivative operarors

(|D|af)(x) =
∫

Rd

f(x+ y)− f(x)

|y|d+a
dy (4.3)

for 0 < a < 2. A calculation shows that in terms of Foirier transforms it is
multiplication by ∫

Rd

ei<ξ , y> − 1

|y|d+a
dy = cd,a|ξ|a

Therefore |D|a and Ta are essentially (upto a constant) inverses of each other.
If r > 0 is written as k + a, where k is a nonnegative integer and 0 ≤ a < 1,
then one defines the norm corresponding to rth derivative by

∥u∥r,p =
∑

∑
i ni≤k

∥Dn1

1 · · ·Dnd

d u∥p +
∑

∑
i ni=k

∥Dn1

1 · · ·Dnd

d u∥a,p (4.4)

where for 0 ≤ a < 1, ∥u∥a.p = ∥|D|au∥p. This way the Sobolev spaces Wr,p

are defined for fractional derivatives as well.

Theorem 4.3. The inclusion map is well defined and bounded from Wr,p

into Ws,q provided s < r, 1 < p < q < ∞, and 1
q
≥ 1

p
− r−s

d
. The extreme

value of q = ∞ is allowed if 1
q
> 1

p
− r−s

d
.

Proof. We can assume without loss of generality that 0 < r− s < 1. We can
go from Wr,p to Ws,q in a finite number of steps, with 0 < r − s < 1 at each
step. We write I = cd,aTa|D|a where a = r − s. By definition |D|a maps
Wr,p boundedly into Ws,p. By the earlier theorem Ta maps Ws,p boundedly
into Ws,q. Although we proved it for s = 0, it is true for every s because Ta

commutes with |D|a. The cae q = ∞ is covered as well by this argument.

4.4 Generalized Functions.

Let us begin with the space W1,2. This is a Hilbert Space with the inner
product

< f, g >1=

∫

Rd

[f ḡ +
d∑

1

fxi
ḡxi

]dx =

∫

Rd

fh̄dx
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where h = g −
∑d

1 gxixi
. Since g ∈ W1,2 , gxi

∈ L2 and gxixi
is the derivative

of an L2 function. In fact since we can write
∫
fgxi

dx as −
∫
fxi

gdx, Any
derivative of an L2 function can be thought of as a bounded linear functional
on the space W1,2. A simlar reasoning applies to all the spaces Wr,p . The
dual space of Wr,p is W−r,q where

1
p
+ 1

q
= 1.

For a function to be in Lp its singularities as well as decay at ∞ must be
controlled. We can get rid of the condition at ∞ by demaniding that f be
in Lp(K) for every bounded set K or equivalently by insisting that φf ∈ Lp

for every C∞ function φ with compact support. This definition makes sense
for Wr,p as well. We say that f ∈ W loc

r,p if φf ∈ Wr,p for every C∞ function φ
with compact support. One needs to check that on Wr,p mutiplication by a
smooth function is a bounded linear map. One can use Leibnitz’s rule if r is
an integer. For 0 < r < 1 we need the following lemma.

Lemma 4.4. If f ∈ Wr,p and φ ∈ Cr′ with r < r′ ≤ 1 i.e. φ is a bounded
function satisfying |φ(x)− φ(y)| ≤ C|x− y|r′, for all x, y, then φf ∈ Wr,p.

Proof. We need to prove

g(x) =

∫

Rd

φ(y)f(y)− φ(x)f(x)

|y − x|d+r
dy

is in Lp. We can write

φ(y)f(y)− φ(x)f(x) = φ(x)[f(y)− f(x)] + [φ(y)− φ(x)]f(y).

The contribution of first term is easy to control. To control the second term
it is sufficient to show that

sup
x

∫

Rd

|φ(y)− φ(x)|
|y − x|d+r

dy < ∞

because

∥
∫

Rd

K(x, y)f(y)dy∥p ≤ (sup
x

∫

Rd

|K(x, y)|dy)∥f∥p

To this end we split the integral into two regions |x− y| ≤ 1 and |x− y| > 1,
use the Hölder property of φ to obtain an estimate on the integral over
|x − y| ≤ 1 and the boundedness of φ to get an estimate over |x − y| > 1,
both of which are uniform in x.


